Файловая система виды

Ответы на билеты по гос экзаменам Факультет К кафедра 29 / Сетевые ОС / Операционные системы / Операционные системы / Файловые системы. Типы файловых систем. Операции с файлами. Каталоги. Операции с каталогами. (5)

Файловые системы. Типы файловых систем. Операции с файлами. Каталоги. Операции с каталогами.

Файл — это именованная область внешней памяти, в которую можно записывать и из которой можно считывать данные.

Основные цели использования файла.

  • Долговременное и надежное хранение информации. Долговременность достигается за счет использования запоминающих устройств, не зависящих от питания, а высокая надежность определяется средствами защиты доступа к файлам и общей организацией программного кода ОС, при которой сбои аппаратуры чаще всего не разрушают информацию, хранящуюся в файлах.

  • Совместное использование информации. Файлы обеспечивают естественный и легкий способ разделения информации между приложениями и пользователями за счет наличия понятного человеку символьного имени и постоянства хранимой информации и расположения файла. Пользователь должен иметь удобные средства работы с файлами, включая каталоги-справочники, объединяющие файлы в группы, средства поиска файлов по признакам, набор команд для создания, модификации и удаления файлов. Файл может быть создан одним пользователем, а затем использоваться совсем другим пользователем, при этом создатель файла или администратор могут определить права доступа к нему других пользователей. Эти цели реализуются в ОС файловой системой.

Файловая система (ФС) — это часть операционной системы, включающая:

  • совокупность всех файлов на диске;

  • наборы структур данных, используемых для управления файлами, такие, например, как каталоги файлов, дескрипторы файлов, таблицы распределения свободного и занятого пространства на диске;

  • комплекс системных программных средств, реализующих различные операции над файлами, такие как создание, уничтожение, чтение, запись, именование и поиск файлов.

Таким образом, файловая система играет роль промежуточного слоя, экранирующего все сложности физической организации долговременного хранилища данных, и создающего для программ более простую логическую модель этого хранилища, а также предоставляя им набор удобных в использовании команд для манипулирования файлами.

Широко известны следующие файловые системы:

  1. файловая система операционной системы MS-DOS, в основу которой положена таблица размещения файлов — FAT (File Allocation Table).

Таблица содержит сведения о расположении всех файлов (каждый файл делится на кластеры в соответствии с наличием свободного места на диске, кластеры одного файла не обязательно расположены рядом). Файловая система MS-DOS имеет значительные ограничения и недостатки, например, под имя файла отводится 12 байт, работа с жестким диском большого объема приводит к значительной фрагментации файлов;

Основные функции в такой ФС нацелены на решение следующих задач:

  • именование файлов;

  • программный интерфейс для приложений;

  • отображения логической модели файловой системы на физическую организацию хранилища данных;

  • устойчивость файловой системы к сбоям питания, ошибкам аппаратных и программных средств.

  1. файловая система операционной системы OS/2, называемая HPFS (High-Performance File System — быстродействующая файловая система).

Обеспечивает возможность иметь имя файла до 254 символов. Файлы, записанные на диск, имеют минимальную фрагментацию. Может работать с файлами, записанными в MS DOS;

К перечисленным выше задачам добавляется новая задача совместного доступа к файлу из нескольких процессов. Файл в этом случае является разделяемым ресурсом, а значит, файловая система должна решать весь комплекс проблем, связанных с такими ресурсами. В частности, в ФС должны быть предусмотрены средства блокировки файла и его частей, предотвращения гонок, исключение тупиков, согласование копий и т. п.

В многопользовательских системах появляется еще одна задача: защита файлов одного пользователя от несанкционированного доступа другого пользователя.

  1. файловая система операционной системы Windows 95

Имеет уровневую структуру, что позволяет поддерживать одновременно несколько файловых систем. Старая файловая система MS-DOS поддерживается непосредственно, а файловые системы разработанные не фирмой Microsoft, поддерживаются с помощью специальных модулей. Имеется возможность использовать длинные (до 254 символов) имена файлов.

  1. файловые системы операционной системы Unix

Они обеспечивают унифицированный способ доступа к файловым системам ввода-вывода.

Права доступа к файлу практически определяют права доступа к системе (владелец файла – пользователь, который его создал).

Типы файлов

Файловые системы поддерживают несколько функционально различных типов файлов, в число которых, как правило, входят обычные файлы, файлы-каталоги, специальные файлы, именованные конвейеры, отображаемые в память файлы и другие.

Обычные файлы, или просто файлы, содержат информацию произвольного характера, которую заносит в них пользователь или которая образуется в результате работы системных и пользовательских программ. Большинство современных операционных систем (например, UNIX, Windows, OS/2) никак не ограничивает и не контролирует содержимое и структуру обычного файла. Содержание обычного файла определяется приложением, которое с ним работает. Например, текстовый редактор создает текстовые файлы, состоящие из строк символов, представленных в каком-либо коде. Это могут быть документы, исходные тексты программ и т. п. Текстовые файлы можно прочитать на экране и распечатать на принтере. Двоичные файлы не используют коды символов, они часто имеют сложную внутреннюю структуру, например исполняемый код программы или архивный файл. Все операционные системы должны уметь распознавать хотя бы один тип файлов — их собственные исполняемые файлы.

Каталоги — это особый тип файлов, которые содержат системную справочную информацию о наборе файлов, сгруппированных пользователями по какому-либо неформальному признаку (например, в одну группу объединяются файлы, содержащие документы одного договора, или файлы, составляющие один программный пакет). Во многих операционных системах в каталог могут входить файлы любых типов, в том числе другие каталоги, за счет чего образуется древовидная структура, удобная для поиска. Каталоги устанавливают соответствие между именами файлов и их характеристиками, используемыми файловой системой для управления файлами. В число таких характеристик входит, в частности, информация (или указатель на другую структуру, содержащую эти данные) о типе файла и расположении его на диске, правах доступа к файлу и датах его создания и модификации. Во всех остальных отношениях каталоги рассматриваются файловой системой как обычные файлы.

Специальные файлы — это фиктивные файлы, ассоциированные с устройствами ввода-вывода, которые используются для унификации механизма доступа к файлам и внешним устройствам. Специальные файлы позволяют пользователю выполнять операции ввода-вывода посредством обычных команд записи в файл или чтения из файла. Эти команды обрабатываются сначала программами файловой системы, а затем на некотором этапе выполнения запроса преобразуются операционной системой в команды управления соответствующим устройством.

Современные файловые системы поддерживают и другие типы файлов, такие как символьные связи, именованные конвейеры, отображаемые в память файлы.

Иерархическая структура файловой системы

Пользователи обращаются к файлам по символьным именам. Однако способности человеческой памяти ограничивают количество имен объектов, к которым пользователь может обращаться по имени. Иерархическая организация пространства имен позволяет значительно расширить эти границы. Именно поэтому большинство файловых систем имеет иерархическую структуру, в которой уровни создаются за счет того, что каталог более низкого уровня может входить в каталог более высокого уровня (рис. 7.3).

Граф, описывающий иерархию каталогов, может быть деревом или сетью. Каталоги образуют дерево, если файлу разрешено входить только в один каталог (рис. 7.3, б), и сеть — если файл может входить сразу в несколько каталогов (рис. 7.3, в). Например, в MS-DOS и Windows каталоги образуют древовидную структуру, а в UNIX — сетевую. В древовидной структуре каждый файл является листом. Каталог самого верхнего уровня называется корневым каталогом, или корнем (root).

При такой организации пользователь освобожден от запоминания имен всех файлов, ему достаточно примерно представлять, к какой группе может быть отнесен тот или иной файл, чтобы путем последовательного просмотра каталогов найти его. Иерархическая структура удобна для многопользовательской работы: каждый пользователь со своими файлами локализуется в своем каталоге или поддереве каталогов, и вместе с тем все файлы в системе логически связаны.

Частным случаем иерархической структуры является одноуровневая организация, когда все файлы входят в один каталог (рис. 7.3, а).

Имена файлов

Все типы файлов имеют символьные имена. В иерархически организованных файловых системах обычно используются три типа имен -файлов: простые, составные и относительные.

Простое, или короткое, символьное имя идентифицирует файл в пределах одного каталога. Простые имена присваивают файлам пользователи и программисты, при этом они должны учитывать ограничения ОС как на номенклатуру символов, так и на длину имени. До сравнительно недавнего времени эти границы были весьма узкими. Так, в популярной файловой системе FAT длина имен ограничивались схемой 8.3 (8 символов — собственно имя, 3 символа — расширение имени), а в файловой системе s5, поддерживаемой многими версиями ОС UNIX, простое символьное имя не могло содержать более 14 символов. Однако пользователю гораздо удобнее работать с длинными именами, поскольку они позволяют дать файлам легко запоминающиеся названия, ясно говорящие о том, что содержится в этом файле. Поэтому современные файловые системы, а также усовершенствованные варианты уже существовавших файловых систем, как правило, поддерживают длинные простые символьные имена файлов. Например, в файловых системах NTFS и FAT32, входящих в состав операционной системы Windows NT, имя файла может содержать до 255 символов.

В иерархических файловых системах разным файлам разрешено иметь одинаковые простые символьные имена при условии, что они принадлежат разным каталогам. То есть здесь работает схема «много файлов — одно простое имя». Для одпозначной идентификации файла в таких системах используется так называемое полное имя.

Полное имя представляет собой цепочку простых символьных имен всех каталогов, через которые проходит путь от корня до данного файла. Таким образом, полное имя является составным, в котором простые имена отделены друг от друга принятым в ОС разделителем. Часто в качестве разделителя используется прямой или обратный слеш, при этом принято не указывать имя корневого каталога. На рис. 7.3, б два файла имеют простое имя main.exe, однако их составные имена /depart/main.ехе и /user/anna/main.exe различаются.

В древовидной файловой системе между файлом и его полным именем имеется взаимно однозначное соответствие «один файл — одно полное имя». В файловых системах, имеющих сетевую структуру, файл может входить в несколько каталогов, а значит, иметь несколько полных имен; здесь справедливо соответствие «один файл — много полных имен». В обоих случаях файл однозначно идентифицируется полным именем.

Файл может быть идентифицирован также относительным именем. Относительное имя файла определяется через понятие «текущий каталог». Для каждого пользователя в каждый момент времени один из каталогов файловой системы является текущим, причем этот каталог выбирается самим пользователем по команде ОС. Файловая система фиксирует имя текущего каталога, чтобы затем использовать его как дополнение к относительным именам для образования полного имени файла. При использовании относительных имен пользователь идентифицирует файл цепочкой имен каталогов, через которые проходит маршрут от текущего каталога до данного файла. Например, если текущим каталогом является каталог /user, то относительное имя файла /user/anna/main.exe выглядит следующим образом: anna/ main.exe.

В некоторых операционных системах разрешено присваивать одному и тому же файлу несколько простых имен, которые можно интерпретировать как псевдонимы. В этом случае, так же как в системе с сетевой структурой, устанавливается соответствие «один файл — много полных имен», так как каждому простому имени файла соответствует по крайней мере одно полное имя.

И хотя полное имя однозначно определяет файл, операционной системе проще работать с файлом, если между файлами и их именами имеется взаимно однозначное соответствие. С этой целью она присваивает файлу уникальное имя, так что справедливо соотношение «один файл — одно уникальное имя». Уникальное имя существует наряду с одним или несколькими символьными именами, присваиваемыми файлу пользователями или приложениями. Уникальное имя представляет собой числовой идентификатор и предназначено только для операционной системы. Примером такого уникального имени файла является номер индексного дескриптора в системе UNIX.

Атрибуты файлов

Понятие «файл» включает не только хранимые им данные и имя, но и атрибуты. Атрибуты — это информация, описывающая свойства файла. Примеры возможных атрибутов файла:

  • тип файла (обычный файл, каталог, специальный файл и т. п.);

  • владелец файла;

  • создатель файла;

  • пароль для доступа к файлу;

  • информация о разрешенных операциях доступа к файлу;

  • времена создания, последнего доступа и последнего изменения;

  • текущий размер файла;

  • максимальный размер файла;

  • признак «только для чтения»;

  • признак «скрытый файл»;

  • признак «системный файл»;

  • признак «архивный файл»;

  • признак «двоичный/символьный»;

  • признак «временный» (удалить после завершения процесса);

  • признак блокировки;

  • длина записи в файле;

  • указатель на ключевое поле в записи;

  • длина ключа.

Набор атрибутов файла определяется спецификой файловой системы: в файловых системах разного типа для характеристики файлов могут использоваться разные наборы атрибутов. Например, в файловых системах, поддерживающих неструктурированные файлы, нет необходимости использовать три последних атрибута в приведенном списке, связанных со структуризацией файла. В однопользовательской ОС в наборе атрибутов будут отсутствовать характеристики, имеющие отношение к пользователям и защите, такие как владелец файла, создатель файла, пароль для доступа к файлу, информация о разрешенном доступе к файлу.

Пользователь может получать доступ к атрибутам, используя средства, предоставленные для этих целей файловой системой. Обычно разрешается читать значения любых атрибутов, а изменять — только некоторые. Например, пользователь может изменить права доступа к файлу (при условии, что он обладает необходимыми для этого полномочиями), но изменять дату создания или текущий размер файла ему не разрешается.

Значения атрибутов файлов могут непосредственно содержаться в каталогах, как это сделано в файловой системе MS-DOS (рис. 7.6, а). На рисунке представлена структура записи в каталоге, содержащая простое символьное имя и атрибуты файла. Здесь буквами обозначены признаки файла: R — только для чтения, А — архивный, Н — скрытый, S — системный.

Рис. 7.6. Структура каталогов: а — структура записи каталога MS-DOS (32 байта), б — структура записи каталога ОС UNIX

Другим вариантом является размещение атрибутов в специальных таблицах, когда в каталогах содержатся только ссылки на эти таблицы. Такой подход реализован, например, в файловой системе ufs ОС UNIX. В этой файловой системе структура каталога очень простая. Запись о каждом файле содержит короткое символьное имя файла и указатель на индексный дескриптор файла, так называется в ufs таблица, в которой сосредоточены значения атрибутов файла (рис. 7.6, б).

В том и другом вариантах каталоги обеспечивают связь между именами файлов и собственно файлами. Однако подход, когда имя файла отделено от его атрибутов, делает систему более гибкой. Например, файл может быть легко включен сразу в несколько каталогов. Записи об этом файле в разных каталогах могут содержать разные простые имена, но в поле ссылки будет указан один и тот же номер индексного дескриптора.

Операции над файлами

Большинство современных ОС рассматривают файл как неструктурированную последовательность байт переменной длины. В стандарте POSIX над файлом определены следующие операции:

  1. int open(char * fname, int flags, mode_t mode)

Эта операция «открывает» файл, устанавливая соединение между программойи файлом. При этом программа получает дескриптор файла — целоечисло, идентифицирующее данное соединение. Фактически это индекс в системнойтаблице открытых файлов для данной задачи. Все остальные операции используютэтот индекс для ссылки на файл.

Параметр char * fname задает имя файла.int flags — это битовая маска, определяющая режим открытия файла.Файл может быть открыт только на чтение, только на запись и начтение и запись; кроме того, можно открывать существующий файл,а можно пытаться создать новый файл нулевой длины.Необязательный третий параметр mode используется толькопри создании файла и задает атрибуты этого файла.

  1. off_t lseek(int handle, off_t offset, int whence)

Эта операция перемещает указатель чтения/записи в файле.Параметр offset задает количество байт, на которое нужно сместитьуказатель, а параметр whence — откуда отсчитывать смещение.Предполагается, что смещение можно отсчитывать от начала файла(SEEK_SET), от его конца (SEEK_END) и от текущегоположения указателя (SEEK_CUR). Операция возвращает положениеуказателя, отсчитываемое от начала файла. Таким образом, вызовlseek(handle, 0, SEEK_CUR) возвратит текущее положение указателя,не передвигая его.

  1. int read(int handle, char * where, size_t how_much)

Операция чтения из файла. Указатель where задает буфер,куда нужно поместитьпрочитанные данные; третий параметр указывает, сколько данных надо считать.Система считывает требуемое число байт из файла, начиная с указателячтения/записи в этом файле, и перемещает указатель к концу считаннойпоследовательности. Если файл кончился раньше, считывается столько данных,сколько оставалось до его конца. Операция возвращает количествосчитанных байт. Если файл открывался только для записи, вызов readвозвратит ошибку.

  1. int write(int handle, char * what, size_t how_much)

Операция записи в файл. Указатель what задает начало буфера данных;третий параметр указывает, сколько данных надо записать.Система записывает требуемое число байт в файл, начиная с указателячтения/записи в этом файле, заменяя хранившиеся на в этом месте данные,и перемещает указатель к концу записанного блока. Если файл кончился раньше,его длина увеличивается. Операция возвращает количество записанных байт.

Если файл открывался только для чтения, вызов write возвратит ошибку.

  1. int ioctl(int handle, int cmd, …); int fcntl(int handle, int cmd, …)

Дополнительные операции над файлом. Первоначально, по-видимому,предполагалось, что ioctl — это операции над самим файлом,а fcntl — это операции над дескриптором открытого файла,но потом историческое развитие несколько перемешало функции этих системныхвызовов. Стандарт POSIX определяет некоторые операции как наддескриптором, например дублирование (в результате этой операции мы получаемдва дескриптора, связанных с одним и тем же файлом), так и над самим файлом,например, операцию truncate — обрезать файл до заданной длины.В большинстве версий Unix операцию truncate можноиспользовать и для вырезания данных из середины файла. При считывании данныхиз такой вырезанной области считываются нули, а сама эта область незанимает физического места на диске.

Важной операцией является блокировка участков файла.Стандарт POSIX предлагает для этой целибиблиотечную функцию, но в системах семейства Unix этафункция реализована через вызов fcntl.

Большинство реализаций стандарта POSIX предлагает и своидополнительные операции. Так, в Unix SVR4 этими операциямиможно устанавливать синхронную или отложенную запись и т.д.

  1. caddr_t mmap(caddr_t addr, size_t len, int prot, int flags, int handle, off_t offset)

Отображение участка файла в виртуальное адресное пространство процесса.Параметр prot задает права доступа к отображенному участку:на чтение, запись и исполнение. Отображение может происходитьна заданный виртуальный адрес, или же система может выбирать адрес дляотображения сама.

Еще две операции выполняются уже не над файлом, а над его именем:это операции переименования и удаления файла. В некоторых системах,например в системах семейства Unix, файл может иметьнесколько имен, и существует только системный вызов для удаления имени.Файл удаляется при удалении последнего имени.

Видно, что набор операций над файлом в этом стандарте очень похожна набор операций над внешним устройством. И то и другое рассматриваетсякак неструктурированный поток байт. Для полноты картины следует сказать,что основное средство межпроцессной коммуникации в системах семействаUnix (труба) также представляет собойнеструктурированный поток данных. Идея о том, что большинство актов передачиданных может быть сведено к байтовому потоку, довольно стара, ноUnix был одной из первых систем, где эта идея была приближена клогическому завершению.

Примерно та же модель работы с файлами принята в CP/M,а набор файловых системных вызовов MS DOS фактическископирован с вызовов Unix v7. В свою очередь, OS/2и Windows NT унаследовали принципы работы с файламинепосредственно от MS DOS.

Напротив, в системах, не имеющих Unix в родословной,может использоваться несколько иная трактовка понятия файла.Чаще всего файл трактуется как набор записей. Обычно система поддерживаетзаписи как постоянной длины, так и переменной. Например, текстовый файлинтерпретируется как файл с записями переменной длины, а каждой строке текстасоответствует одна запись. Такова модель работы с файлами в VMSи в ОС линии OS/360-MVS фирмы IBM.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *