Как узнать характеристики блока питания компьютера?

Как рассчитать нужную мощность блока питания на ПК

При покупке нового блока питания следует рассчитать необходимую мощность, дабы компьютер работал стабильно и чётко. Для этого создали специальные калькуляторы, благодаря которым можно рассчитать мощность БП. Самыми популярными из них являются:
http://ru.msi.com/power-supply-calculator
http://www.coolermaster.outervision.com/
http://www.casemods.ru/services/raschet_bloka_pitania.html
Здесь все просто: заполните форму, уточнив какие комплектующие установлены в Ваш ПК (процессор, видеокарта, жесткие диски, оптические приводы, кулеры и пр.). Когда все детали подобраны, Вы сможете увидеть рекомендованную мощность для своего будущего блока питания. После этого прибавьте еще 30% к полученной мощности для полной уверенности, советую, дабы не было сбоев.
Узнать мощность блока питания в компьютере, как видно, очень просто и этот процесс занимает максимум около 5-ти минут. Кстати, при покупке блока питания советую выбирать устройства от известных производителей: Cooler Master, Deepсool, Antec, Chieftec, Fractal Design, Enermax, Hiper, FSP, OCZ, INWIN, Thermaltake. И напоследок: рекомендую не приобретать блоки питания с групповой стабилизацией напряжений, выбирайте с раздельной! Переплатите немного денег, зато комплектующие будут долго служить, и радовать Вас своей стабильной работой.
На этом все! Спасибо за внимание!

Немного теории

Задача блока питания (БП) персонального компьютера – преобразовывать высокое переменное напряжение бытовой электросети в низкое постоянное, которое потребляют устройства. Согласно стандарту ATX, на выходе у него формируется несколько уровней напряжения: +5 V, +3,3 V, +12 V, -12 V, +5 V SB (standby – дежурное питание).

От линий +5 V и + 3,3 V питаются USB-порты, модули оперативной памяти, основная масса микросхем, часть вентиляторов системы охлаждения, платы расширения в слотах PCI, PCI-E и т. д. От 12-вольтовой линии – процессор, видеокарта, двигатели жестких дисков, оптические приводы, вентиляторы. От +5 V SB – логическая схема запуска материнской платы, USB, сетевой контроллер (для возможности включения компьютера с помощью Wake-on-LAN). От -12 V – COM-порт.

Также БП вырабатывает сигнал Power_Good (или Power_OK), который информирует материнскую плату о том, что питающие напряжения стабилизированы и можно начинать работу. Высокий уровень Power_Good составляет 3-5,5 V.

Значения выходных напряжений у блоков питания любой мощности одинаковы. Различие – в уровнях токов на каждой линии. Произведение токов и напряжений – и есть показатель мощности питателя, который указывают в его характеристиках.

Если хотите проверить, соответствует ли ваш блок питания номиналу, можете посчитать это самостоятельно, сравнив данные, указанные в его паспорте (на наклейке с одной из боковых сторон) и полученные при измерениях.

Вот пример того, как может выглядеть паспорт:

Работает – не работает

Наверное, вы хоть раз сталкивались с ситуацией, когда при нажатии кнопки включения на системном блоке ничего не происходит. Компьютер попросту не включается. Одна из причин подобного – отсутствие питающих напряжений.

Блок питания может не включаться в двух случаях: при неисправности его самого и при выходе из строя подсоединенных устройств. Если не знаете, как подключенные устройства (нагрузка) могут влиять на питатель, поясню: при коротком замыкании в нагрузке многократно увеличивается потребление тока. Когда это превышает возможности БП, он отключается – уходит в защиту, поскольку иначе попросту сгорит.

Внешне то и другое выглядит одинаково, но определить, в какой части проблема, довольно просто: нужно попытаться включить блок питания отдельно от материнской платы. Поскольку для этого не предусмотрено никаких кнопок, сделаем так:

  • Отключим компьютер от электросети, снимем крышку системного блока и отсоединим от платы колодку ATX – самый многожильный кабель с широким разъемом.

  • Отсоединим от БП остальные устройства и подключим к нему заведомо исправную нагрузку – без нее современные блоки питания, как правило, не включаются. В качестве нагрузки можно использовать обычную лампу накаливания или какой-нибудь энергоемкий девайс, например, привод оптических дисков. Последний вариант – на ваш страх и риск, так как нельзя гарантировать, что устройство не выйдет из строя.
  • Возьмем разогнутую металлическую скрепку или тонкий пинцет и замкнем на колодке ATX (которая идет от БП) контакты, отвечающие за включение. Один из контактов называется PS_ON и соответствует единственному зеленому проводу. Второй – COM или GND (земля), соответствует любому черному проводу. Эти же контакты замыкаются при нажатии кнопки включения на системнике.

Вот, как это показано на схеме:

Если после замыкания PS_ON на землю в блоке питания закрутится вентилятор, а также заработает устройство, подключенное в качестве нагрузки, питатель можно считать работоспособным.

А что на выходе?

Работоспособность не всегда означает исправность. БП вполне может включаться, но не вырабатывать нужных напряжений, не выдавать на плату сигнал Power_Good (или выдавать слишком рано), просаживаться (снижать выходные напряжения) под нагрузкой и т. п. Чтобы это проверить, понадобится специальный прибор – вольтметр (а лучше мультиметр) с функцией измерения постоянного напряжения.

Например, такой:

Или любой другой. Модификаций этого прибора очень много. Они свободно продаются в магазинах радио- и электротоваров. Для наших целей вполне подойдет самый простой и дешевый.

С помощью мультиметра мы будем измерять напруги на разъемах работающего блока питания и сравнивать показатели с номинальными.

В норме значения выходных напряжений при любой нагрузке (не превышающей допустимую для вашего БП) не должны отклоняться больше, чем на 5%.

Порядок измерений

  • Включаем компьютер. Системник должен быть собран в обычной комплектации, т. е. в нем должно присутствовать всё оборудование, которое вы используете постоянно. Дадим блоку питания немного прогреться – примерно 20-30 минут просто поработаем на ПК. Это повысит достоверность показателей.
  • Далее запускаем игру или тестовое приложение, чтобы нагрузить систему по полной. Это позволит проверить, способен ли питатель обеспечить энергией устройства, когда они работают с максимальным потреблением. В качестве нагрузки можете использовать стрессовый тест Power Supply из программы OCCT.

  • Включаем мультиметр. Устанавливаем переключатель на значение 20 V постоянного напряжения (шкала постоянных напруг обозначена буквой V, рядом с которой нарисованы прямая и пунктирная линии).

  • Красный щуп мультиметра подсоединяем к любому разъему напротив цветного повода (красного, желтого, оранжевого). Черный – напротив черного. Или закрепляем его на любой металлической детали на плате, которая не находится под напряжением (измерение напруг следует проводить относительно нуля).

  • Снимаем показатели с дисплея прибора. По желтому проводу подается 12 V, значит, на дисплее должно быть значение, равное 12 V ± 5%. По красному – 5 V, нормальным будет показатель 5 V ± 5%. По оранжевому, соответственно – 3,3 V± 5%.

Более низкие напряжения на одной или нескольких линиях говорят о том, что БП не вытягивает нагрузку. Такое бывает, когда его фактическая мощность не соответствует потребностям системы из-за износа компонентов или не слишком высокого качества изготовления. А может, из-за того, что он изначально был неправильно подобран или перестал справляться со своей задачей после апгрейда компьютера.

Для правильного определения необходимой мощности БП удобно использовать специальные сервисы-калькуляторы. Например, этот. Здесь пользователю следует выбрать из списков всё оборудование, установленное на ПК, и нажать «Calculate». Программа не только рассчитает требуемую мощность питателя, но и предложит 2-3 подходящие модели.

Зловредные пульсации

Бывает и так: выходные напряжения в норме, а компьютер все равно не работает как надо – виснет, перезагружается, не видит устройства, искажает звук и т. п. Одна из возможных причин такого поведения – паразитные пульсации выходных напряжений. В результате всех преобразований входного переменного напряжения (выпрямления, сглаживания, повторной конвертации в переменное с более высокой частотой, понижения, еще одного выпрямления и сглаживания) выходное должно иметь постоянный уровень, то есть его вольтаж не должен изменяться во времени. Если смотреть осциллографом, оно должно иметь вид прямой линии: чем прямее – тем лучше.

В реальности идеально ровная прямая на выходе БП – что-то из области фантастики. Нормальным показателем считается отсутствие колебаний амплитуды более 50 mV по линиям 5 V и 3,3 V, а также 120 mV по линии 12 V. Если они больше, как, например, на этой осциллограмме, возникают вышеописанные проблемы.

Причинами возникновения шумов и пульсаций обычно бывают упрощенная схема или некачественные элементы выходного сглаживающего фильтра, что обычно встречается в дешевых блоках питания. А также в старых, выработавших свой ресурс.

К сожалению, выявить дефект без осциллографа крайне затруднительно. А этот девайс, в отличие от мультиметра, стоит довольно дорого и не так часто нужен в хозяйстве, поэтому вы вряд ли решитесь его купить. Косвенно о наличии пульсаций можно судить по качанию стрелки или беганью цифр на дисплее мультиметра при измерении постоянных напряжений, но это будет заметно, только если прибор достаточно чувствительный.

А еще мы можем измерить ток

Раз у нас есть мультиметр, в дополнение к остальному мы можем определить токи, которые вырабатывает питатель. Ведь именно они имеют решающее значение при расчете мощности, указываемой в характеристиках.

Недостаток тока тоже сказывается на работе компьютера крайне неблагоприятно. «Недокормленная» система нещадно тормозит, а блок питания при этом греется, как утюг, поскольку работает на пределе возможностей. Долго это продолжаться не может, и рано или поздно такой БП выйдет из строя.

Трудность измерения тока заключается в том, что амперметр (в нашем случае – мультиметр в режиме амперметра) необходимо включать в разрыв цепи, а не подсоединять к разъемам. Чтобы это сделать, придется разрезать или отпаять провод на проверяемой линии.

Для тех, кто решился на эксперимент с замерами токов (а без серьезных оснований этого делать, пожалуй, не стоит), привожу инструкцию.

  • Выключите компьютер. Разделите пополам проводник на исследуемой линии. Если жалко портить провода, можете проделать это на переходнике, который одним концом подсоединяется к разъему блока питания, а вторым – к устройству.
  • Переведите мультиметр в режим измерения постоянных токов (их шкала на приборе обозначена буквой А с прямой и пунктирной линиями). Установите переключатель на значение, превышающее номинальный ток на линии (последний, как вы помните, указан на наклейке БП).
  • Подключите мультиметр в разрыв провода. Красный щуп расположите ближе к источнику, чтобы ток протекал в направлении от него к черному. Включите компьютер и зафиксируйте показатель.

***

После всех проверок у вас будет если не полное, то весьма неплохое представление, на что способен блок питания вашего компьютера. Если всё отлично, я могу за вас только порадоваться. А если нет… Эксплуатация неисправного или некачественного питателя часто заканчивается выходом из строя и его самого, и других устройств ПК. Будет весьма неприятно, если этим другим окажется дорогостоящая видеокарта, поэтому старайтесь не экономить на столь важной детали и решайте все возникшие с ней проблемы как только заметите. Ещё на сайте: Питаться, чтобы «жить»: как проверить блок питания компьютера обновлено: Март 8, 2017 автором: Johnny Mnemonic

Применение VRM

На плате находится разъём для подключения питания, на сегодняшний день стандарт предусматривает установку минимум двух разъемов – 24-контактного ATX и 4-контактного ATX12V для дополнительной линии 12В. Иногда производители материнских плат устанавливают 8-контактный EPS12V вместо ATX12V, через него можно подвести две линии 12В. Питание, подаваемое блоком питания, проходит преобразование, стабилизацию и фильтрацию с помощью силовых полевых транзисторов (MOSFET, «мосфетов»), дросселей и конденсаторов, составляющих VRM (Voltage Regulation Module, модуль регулирования напряжения). Питание процессора и чипсета осуществляется одним VRM, питание модулей памяти – чаще всего другим. Дополнительно для стабилизации питания, подаваемого через разъёмы PCI Express, иногда устанавливаются стандартные разъёмы Molex.

VRM разработан для того, чтобы существующие системные платы могли поддерживать несколько типов процессоров, а также те, которые появятся в будущем. Ведь каждый процессор имеет свое напряжение питания. При установке процессора в материнскую плату по соответствующим контактам VID (4 или 6 штук) тот определяет модель установленного процессора и подает на его кристалл (ядро) соответствующее напряжение питания. Фактически, комбинация 0 и 1 на выводах VID задает 4 или 6-битный код, по которому VRM «узнает» о модели процессора.

Для примера рассмотрим питание ядер процессоров модели Intel Core 2 Extreme (Conroe, техпроцесс, 65 нм, частота 2,93 ГГц, 4 Мбайт L2).

Для этого процессора значение VID находится в диапазоне 0,85–1,36525 В, максимальный ток для верхней модели E6800 может достигать величины 90 А, для остальных, представленных моделями E6300, Е6400, Е6600, Е6700, — 75 А. VRM для процессоров Intel Core 2 Duo должен удовлетворять спецификации 11.0.

Существует два типа регуляторов: линейный и импульсный. Применявшийся в более старых платах линейный регулятор напряжения представлял собой микросхему, понижающую напряжение за счет рассеяния его избытка в виде тепла. С уменьшением требуемого напряжения росла тепловая мощность, рассеиваемая такими регуляторами, поэтому они снабжались массивными радиаторами, по которым их легко было найти на материнской плате. При установке в материнскую плату процессора, потребляющего большую мощность, регулятор (а с ним и материнская плата) мог выйти из строя из-за перегрева. Поэтому в современных материнских платах применяется импульсный регулятор, содержащий сглаживающий фильтр низких частот, на который подается последовательность коротких импульсов полного напряжения.

Импульсный стабилизатор содержит реактивно-индуктивный LC-фильтр, на который короткими импульсами подается полное напряжение питания, и за счет инерции емкости и индуктивности выравнивается до требуемой величины, причем бесполезных потерь энергии практически не происходит. Стабильность напряжения поддерживается путем управления частотой и шириной импульсов (широтно-импульсная модуляция, ШИМ). При широтно-импульсной модуляции в качестве несущего колебания используется периодическая последовательность прямоугольных импульсов, а информационным параметром, связанным с дискретным модулирующим сигналом, является длительность этих импульсов. Периодическая последовательность прямоугольных импульсов одинаковой длительности имеет постоянную составляющую, обратно пропорциональную скважности импульсов, то есть прямо пропорциональную их длительности. Пропустив импульсы через ФНЧ с частотой среза, значительно меньшей, чем частота следования импульсов, эту постоянную составляющую можно легко выделить, получив стабильное постоянное напряжение.

Применение импульсных стабилизаторов позволяет значительно сократить тепловыделение, однако создает дополнительный источник помех, который может влиять на работу видео- и звуковых адаптеров.

За счет инерционности фильтра импульсы сглаживаются в требуемое постоянное напряжение. КПД такого преобразователя весьма высок, поэтому паразитного нагрева почти не происходит. Узнать импульсный регулятор напряжения на плате можно по катушкам индуктивности. Во всех новых платах применяется многоканальный (многофазный) преобразователь напряжения, который понижает напряжение питания до необходимых 0,8—1,7 В на ядре процессора (в зависимости от модели).

Трехканальный VRM на плате K8NS (Socket-939)

Таким образом, VRM – это по сути ШИМ-регулятор на микросхеме с преобразователями на MOSFET и фильтром. Как правило, напряжение на системной плате выше, чем на ядре процессора.

Традиционно основные регуляторы напряжения расположены вокруг процессорного разъема. Учитывая высокие значения потребляемых токов, они создаются многоканальными (многофазными). Обычно их число три-четыре, но на топовых платах их число может достигать 8. Отказ от одноканального питания снижает нагрузку на регулирующие транзисторы. С целью улучшения температурных режимов их работы, а также повышения надежности, силовые транзисторы нередко снабжаются средствами охлаждения (радиаторами).

В дополнение к многоканальному VRM, индивидуальными системами энергопитания снабжены цепи видеоадаптера и модулей оперативной памяти. Они обеспечивают необходимые уровни напряжений и токов, а также снижают взаимное влияние, передаваемое по силовым шинам.

Большое количество вентиляторов, сосредоточенных в небольшом объеме, создает сравнительно высокий уровень акустического шума. Уменьшить его можно специальным дизайном материнских плат, предусматривающим использование решений на основе тепловых трубок (heat pipe).

В качестве примера можно привести плату Gigabyte GA-965P-DQ6. На ней радиаторы, установленные на обеих микросхемах чипсета, соединены несколькими тепловыми трубками с радиаторами, установленными на силовых транзисторах VRM.

Такое решение обеспечивает эффективное перераспределение тепловых потоков между несколькими радиаторами. В результате выравниваются температуры элементов, работающих в ключевых режимах, являющихся источниками неравномерного нагрева, как в пространстве, так и во времени. Охлаждению же всей конструкции способствует общий дизайн, предусматривающий использование воздушных потоков, порождаемых вентиляторами процессора и кулера.

Оценивая эффективность данного решения, необходимо отметить, что еще одним фактором, способствующим уменьшению тепловой и электрической нагрузок на транзисторы VRM, является реализация большого количества каналов (фаз) питания. Например, в архитектуре указанной платы их двенадцать. Столь большое количество каналов существенно упрощает конструкцию VRM, улучшает развязку по линиям питания, уменьшает электрические помехи и увеличивает устойчивость работы компьютерных подсистем. Кроме того, описанная конструкция с пассивными кулерами, аналог которой активно используется, кстати, в бесшумных моделях видеоадаптеров этого же производителя, уменьшает акустический шум и от материнской платы.

Конструкция регулятора напряжения позволяет подавать на него 5 или 12 В (на выходе – напряжение питания процессора). В системе в основном используется напряжение 5 В, но многие компоненты в настоящее время переходят на 12 В, что связано с их энергопотреблением. Кроме того, напряжение 12 В используется, как правило, приводным электродвигателем, а все другие устройства потребляют напряжение 5 В. Величина напряжения, потребляемого VRM (5 или 12 В), зависит от параметров используемой системной платы или конструкции регулятора. Современные интегральные схемы регуляторов напряжения предназначены для работы при входном напряжении от 4 до 36 В, поэтому их конфигурация всецело зависит от разработчика системной платы.

Как правило, в системных платах, предназначенных для процессоров Pentium III и Athlon/Duron, использовались 5-вольтные регуляторы напряжения. В последние годы возникла тенденция к переходу на регуляторы, потребляющие напряжение 12 В. Это связано с тем, что использование более высокого напряжения позволяет значительно уменьшить текущую нагрузку. Например, если использовать тот же 65-ваттный процессор AMD Athlon с рабочей частотой 1 ГГц, можно получить несколько уровней нагрузки при различных величинах потребляемого напряжения

При использовании напряжения 12 В сила потребляемого тока достигает только 5,4 А или, с учетом 75% эффективности регулятора напряжения, 7,2 А. Таким образом, модификация схемы VRM системной платы, позволяющая использовать напряжение 12 В, представляется достаточно простой. К сожалению, стандартный блок питания ATX 2.03 содержит в основном силовом разъеме только один вывод +12 В. Дополнительный разъем вообще не содержит выводов +12 В, поэтому толку от него немного. Подача тока силой 8 А и более на системную плату, осуществляемая при напряжении +12 В через стандартный провод, может привести к повреждению разъема.

Для повышения энергообеспечения системных плат в Intel была создана новая спецификация блоков питания ATX12V. Результатом этого стал новый силовой разъем, предназначенный для подачи дополнительного напряжения +12 В на системную плату.

В плате ASUS P5B-E Plus, основанной на чипсете Intel P965 Express, VRM используется 4-канальный, а значит, более приспособленный к надежной поддержке мощных (или сильно разогнанных) процессоров. Дизайном предусмотрено охлаждение половины из ключевых транзисторов, но на данной модели радиатор не установлен. Разъем подачи питания на VRM сделан 8-контактным, чтобы уменьшить вдвое ток, проходящий по линиям +12 В. Впрочем, если у вашего блока питания нет такого разъема, можно подключить плату и через 4-контактный разъем.

Питание процессора и чипсета осуществляется одним VRM, питание модулей памяти и видеоадаптера – чаще всего другими. Это обеспечивает необходимые уровни напряжений и токов, отсутствие просадок по питанию, а также снижает взаимное влияние, передаваемое по силовым шинам.

Схемотехника стабилизаторов питания

Практически все современные стабилизаторы строятся на базе того или иного интегрированного ШИМ-контроллера (PWM) — довольно сложной микросхемы с кучей выводов по краям. Одна группа выводов «заведует» выходным напряжением, которое выбирается комбинацией логических «1» и «0», подаваемых на эти ноги. В зависимости от конструктивной реализации эти выводы могут либо сразу идти на перемычки или быть мультиплексированы еще с чем-то другим.

Пару слов о ключевых элементах. Стабилизатор может быть собран либо на двух n-канальных МОП-транзисторах, в этом случае сток (drain) одного транзистора соединен в точке выхода (Vout) с истоком (source) другого. Оставшийся исток идет на массу, а сток — на стабилизируемое напряжение. Это облегчает поиск делителей на неизвестных микросхемах. Находим два мощных транзистора, смотрим — где они соединяются (там еще дроссель будет) и ищем резистор, ведущий к той же точке. Если с другим концом резистора соединен резистор, идущий на массу — делитель найден!

Большинство схем построено именно по такому принципу, однако вместо второго транзистора может использоваться и диод. Внешне он похож на транзистор, только на нем (как правило) написано MOSPEC, а два крайних вывода замкнуты накоротко. Такая схема проще в исполнении, содержит меньше деталей, однако за счет падения на прядения на n-p переходе (~0,6 В) снижается КПД и увеличивается рассеиваемая тепловая мощность, то есть, попросту говоря, нагрев.

В одних случаях каждый узел питается своим собственным стабилизатором (и вся плата тогда в стабилизаторах), в других — производители путем хитроумных извращений запитывают несколько узлов от одного стабилизатора. В частности, на ASUS P5AD2/P5GD2 один и тот же стабилизатор питает и северный мост, и память, используя кремниевый диод для зарядки обвязывающего конденсатора до нужного напряжения. Поэтому напряжение на выходе стабилизатора будет отличаться от напряжения на чипсете. Увеличивая напряжение на памяти, мы неизбежно увеличиваем напряжение и чипсете, спалить который гораздо страшнее, да и греется он сильно.

Стабилизатор может собираться и на операционном усилителе, и на преобразователе постоянного тока или даже на микроконтроллере. Усилители/преобразователи обычно имеют прямоугольный корпус и небольшое количество ног (порядка 8), а рядом с ними расположены электролитические конденсаторы, дроссели и мощные ключевые транзисторы, иногда подключаемые к микросхеме напрямую, иногда — через дополнительный крохотный транзистор. Микроконтроллеры — это такие небольшие микросхемы в прямоугольном корпусе с кучей ног (от 16 и больше), рядом с которым торчат конденсаторы/дроссели/транзисторы (впрочем, на дешевых платах дроссели часто выкидывают, а количество конденсаторов сводят к минимуму, оставляя в нераспаянных элементах букву L).

Как выделить стабилизаторы среди прочих микросхем? Проще всего действовать так: выписываем маркировку всех мелких тараканов и лезем в сеть за datasheet’ами, в которых указывается их назначение и, как правило, типовая схема включения, на которой где-то должен быть делитель, подключенный к одному из выводов. Делитель — это два резистора, один из которых всегда подключен к выходу стабилизатора (Vout), а другой — к массе (GROUND или, сокращенно, GND). Выход найти легко, во-первых — вольтметром, во-вторых — чаще всего он расположен в точке соединения двух ключевых транзисторов от которой отходит дроссель (если он есть).

Изменяя сопротивление резисторов делителя, мы пропорционально изменяем и выходное напряжение стабилизатора. Уменьшение сопротивление резистора, подключенного в массе, вызывает увеличение выходного напряжения и наоборот. «Выходной» резистор при уменьшении своего сопротивления уменьшает выходное напряжение.

Современные мощные ключевые транзисторы IGBT, MOSFET имеют довольно высокую емкость затвора (>100 пФ) которая не позволяет «быстро» (десятки кГц) переключать ключевой транзистор. Поэтому для быстрого заряда/разряда емкости затвора применяются спец. схемы или готовые ИМС, называемые «драйверами» которые обеспечивают быстрый перезаряд емкости затвора. В нашем случае, драйвером могут быть как сами микросхемы ШИМ-контроллеров, так и внешние каскады — внешние драйверы (обычно в многофазных преобразователях). Формально любой управляющий (например, предоконечный) каскад может быть драйвером.

Микросхема VRM на платах Gigabyte

На картинке выше представлен новый подход с исполнению ШИМ: вместо 3 микросхем — драйвера и двух мосфетов используется одна интегральная микросхема, включающая в себя все эти компоненты. Такие микросхемы с некоторых пор стали использоваться на дорогих платах Gigabyte и других ведущих производителей.

Дизайн подобных решений разработан и расписан в спецификацииIntel DrMOS V4.0, которая описывает требования к драйверам по питанию Intel CPU.

Именно в этой спецификации приведены все основные типовые сигналы для такой микросхемы:

Basic Input-Output Signal Definition for a typical DrMOS

Микросхемы памяти в зависимости от своих конструктивных особенностей могут требовать большего или меньшего количества питающих напряжений. Как минимум, необходимо запитать ядро — VDD. Вслед за ним идут входные буфера VDDQ, напряжение питания которых не должно превышать напряжения ядра и обычно равно ему. Термирующие (VTT) и референсные (Vref) напряжения равны половине VDDQ. (Некоторые микросхемы имеют встроенные термирующие цепи и подавать на них VTT не нужно).

Применяемые микросхемы

Рассмотрим старую добрую ASUS P4800-E на базе чипсета i865PE. Внимательно рассматривая плату, выделяем все микросхемы с не очень большим количеством ног. Возле северного моста мы видим кварц, а рядом с ним — серый прямоугольник ICS CA332435. Это — клокер, то есть тактовый генератор. Процессор, как обычно, окружен кучей конденсаторов, дросселей и других элементов, выдающих близость стабилизатора питания. Остается только найти ШИМ-контроллер, управляющий стабилизатором. Маленькая микросхема с надписью ADP3180 фирмы Analog Devices. Согласно спецификации (http://www.digchip.com/datasheets/download_datasheet.php?id=121932&part-number=ADP3180) это 6-битный программируемый 2- , 3- , 4-фазный контроллер, разработанный специально для питания Pentium-4. Процессор Pentium 4 жрет слишком большой ток и для поддержания напряжения в норме основному контроллеру требуется три вспомогательных стабилизатора ADP3418. Китайцы славятся своим мастерством собирать устройства с минимумом запчастей, но наш ASUS не принадлежит к числу пройдох и все детали присутствуют на плате — такие маленькие квадратные микросхемы, затерявшиеся среди дросселей и ключевых транзисторов.

Комбинация логических уровней на первых четырех ногах основного контроллера задает выходное напряжение (грубо), точная подстройка которого осуществляется резистором, подключенным к 9 выводу (FB). Чем меньше сопротивление — тем ниже напряжение и наоборот. Следовательно, мы должны выпаять резистор с платы и включить в разрыв цепи дополнительный резистор. Тогда мы сможем не только повысить напряжение сверх предельно допустимого, но и плавно его изменять, что очень хорошо!

Материнская плата ASUS P5K-E/WiFi-AP оснащена 8-фазным стабилизатором питания, собранным на дросселях с ферромагнитным сердечником и транзисторах MOSFET NIKOS P0903BDG (25 В, 9,5 мОм, 50 А) и SSM85T03GH (30 В; 6 мОм; 75 А). Четыре канала стабилизатора питания накрыты радиатором, который по большому счету служит для охлаждения северного моста, от которого тепло передается по тепловой трубке.

У ASUS фирменная микросхема управления питанием называется EPU (Energy Processing Unit):

Контроллер EPU на платах ASUS

Из картинки выше понятно, что микросхема EPU не только генерирует правильное напряжение питания ядра процессора Vcore согласно сигналам VID, но также и общается с чипсетом по шине SM Bus, позволяя через управляющие сигналы такового генератора задавать частоту процессора согласно текущему профилю энергопотребления.

А вот фотография уникальной платы Gigabyte с 10-канальный VRM, который они называли фирменным термином PowerMOS! В нем используется микросхемы фирмы International Rectifier (IR) IR3550, каждая из которых в себя включает мощный синхронный драйвер затвора, упакованный в одном корпусе с управляющим MOSFET и синхронным MOSFET с диодом Шоттки. Максимальный ток — 60 А. Эта микросхема походит как для управления питанием мощных CPU, так и GPU, и многоканальных контроллеров памяти. Эта микросхема, как и аналогичные удовлетворяет спецификации Intel DrMOS V4.0.

Типовая схема включения IR3550 выглядит следующим образом:

Сигналы микросхемы IR3550

Типовая схема включения IR3550

Из картинки поднятно, что напряжение питания самой микросхемы Vcc от 4,5 до 7 V (подается с шины 5V), а выходнйо каскад — Vout.

Если вам пробуется найти схему включения любой микросхему. то это легко сделать в интернете по названию микросхемы и слову datasheet.

DrMOS также поддерживается компаниями MSI, Asrock и некоторыми другими. Более бюджетные производители по прежнему используют стандартный дизайн — отдельная микросхема ШИМ-контроллера и набор силовых мосфетов. Например, на свежей плате ECS X79R-AX на чипсете Intel X79 Express используется VRM-контроллер Intersil ISL6366 для управления 6+1 фазным питанием:

VRM контроллер ISL6366

Из документации микросхема ISL6366 подддерживает стандарт Intel VR12/IMVP7 и имеет два выхода: одна на 6 фаз питания ядра или памяти, второй — на одну дополнительную фазу питания графики, микросхем мониторинга и отдельно линий I/O процессора. Более того, она имеет встроенные функции термомониторинга и термокмопенсации. Также микросхема непрерывно мониторит выходной ток через отдельный резистор и подстраивает напряжение питания. Сама микросхема используется в паре с драйверами ISL6627, подключаемыми к транзисторам:

Typical Application: 6-Phase Coupled-Inductor VR and 1-Phase VR

6+1 фаз питания платы ECS

По фото видно, что транзисторы здесь тоже упакованы в микросхемы, поэтому занимают очень мало место.

Кроме Analog Devices (микросхемы ADP), ШИМ-контроллеры VRM выпускают также Fairchild Semiconductor (FAN), International Rectifier (IR), Intersil (ISL) — очень популярны, Maxim (MAX), ON Semiconductor (NCP), Semtech (SC), STMicroelectronics (L), Analog Integrarion Corp. (AIC, нарисована корона), Richtek (RT) , количество контактов — от 16 до 24 pin.

На данный момент выпускают 33 модели микросхем, поддерживающие спецификацию VRM 10.1 и только 5 микросхем с поддержкой стандарта VRM 11.0.:

Как видно, многие, но далеко не все из этих микросхем импульсных регуляторов имеют 4 фазы стабилизации.

Питание памяти

В окрестностях DIMM-слот быстро обнаруживается несколько ключевых транзисторов, электролитических конденсатора и всего одна микросхема с маркировкой LM 358. Такую микросхему производят все кому только не лень: Fairchild Semiconductor, Philips, ST Microelectronics, Texas Instruments, National Semiconductor и другие.

Это типичный операционный усилитель, причем — двойной. Распиновка приведена на , а схема типового включения — , из которой все становится ясно и типовая схема включения уже не нужна. Нужный нам резистор подключен к выходу операционного усилителя (ноги 1 и 7). Да не введет нас в заблуждение делитель на отрицательном входе. Он не имеет обратной связи по стабилизируемому напряжению и потому нас не интересует.

Смотрим на плату — 7-я нога зашунтирована через конденсатор и дальше никуда не идет, а вот за 1-й тянется дорожка печатного проводника. Значит, это и есть тот вывод, который нам нужен! Чтобы увеличить напряжение на памяти, необходимо включить в разрыв между 1-й ногой и резистором RF дополнительный резистор. Чем больше его сопротивление — тем выше выходное напряжение. Как вариант, можно подпаять между 2-й и 4-й ногами свой резистор (4-я нога — масса), чем меньше его сопротивление — тем выше напряжение и ничего разрывать не придется.

Для контроля напряжения можно использовать либо встроенную систему мониторинга напряжения (если она есть), либо мультиметр. Мультиметр надежнее и ему больше веры, встроенный мониторинг — удобнее, тем более что контролировать напряжение после вольтмода приходится постоянно. На холостых оборотах оно одно, под нагрузкой — другое. Весь вопрос в том, куда его подключать? Один из контактов — на массу, другой — на точку соединения двух ключевых транзисторов или транзистора с диодом. Если найти точку соединения не удалось (ничего смешного здесь нет — на вставленной в компьютер печатной плате разводку разглядеть довольно проблематично), можно подключаться к стоку каждого из транзисторов. У одного из них он идет к входному напряжению, у другого — к уже стабилизированному. Сток обычно расположен посередине и «продублирован» на корпус. Внешне он выглядит как «обрезанный» вывод. Соответственно, в схеме «транзистор плюс диод» сток всегда подключен к входному напряжению и тогда нам нужен исток — крайний правый вывод (если смотреть на транзистор в положении «ноги вниз»). Втыкаем сюда щуп вольтметра, медленно вращаем построечный резистор и смотрим. Если напряжение не меняется, значит мы подключили резистор не туда и все необходимо тщательно перепроверить.

Генераторы тактовой частоты

Обычно производители оставляют довольно солидный запас, и материнская плата сваливается в глюки задолго до его исчерпания, однако в некоторых случаях наши возможности очень даже ограничены. Некоторые платы не гонятся вообще! Что тогда? Тактовый генератор (он же «клокер») может быть собран на разных микросхемах (обычно это ICS или RTM), которые можно программировать путем перебора комбинацией логических «0» и «1» на специальных выводах. Внешне это прямоугольная ИМС в корпусе SOP с кол-вом пинов от 20 до 56 в районе кварца. Таблицу частот можно найти в datasheet’е на микросхему. В древние времена, когда конфигурирование осуществлялось через перемычки, производителю было очень сложно «заблокировать» верхние частоты, но при настройке через BIOS setup — это легко! Придется пойти на довольно рискованный и радикальный шаг — отрезаем «комбинаторную» группу выводов от печатной платы и напаиваем на них jumper’ы с резисторами, схему соединения которых можно взять из того же datasheet’а. И тогда все будет в наших руках! Естественно, настраивать частоту через BIOS уже не удастся.

Микросхема тактового генератора ICS и кварца 14,318 МГц

А вот другой путь — замена кварца. В большинстве материнских плат стоит кварц, рассчитанный на частоту 14,318 МГц, если его заменить на более быстрый, то все частоты пропорционально подскочат, однако при этом, возможно, начнется полный глюкодром. Вообще говоря, замена кварца — неисследованная область, еще ждущая своих энтузиастов.

Клокеров на плате несколько — каждый отвечает за генерацию своего диапазона частот — один на процессор, другие на периферийные шины, GPU. Еще больше на плате кварцев — отдельный, например, стоит рядом с микросхемой сетевой карты и генерирует тактирование для передаче по локальной сети.

Кварц сетевой карты Realtek

Кварц контроллера USB 3.0

Выводы

Собственно, выход из строя ИМС ШИМ-контроллера VRM, выход из строя транзисторов преобразователя или вздутие (и как следствие потеря ёмкости) электролитических конденсаторов («бочек») в цепях питания VRM – это чаще всего встречающийся отказ материнских плат. Проявляется в виде того, что плата не стартует, не подавая признаков жизни или же стартует и выключается.

Применяемые в большинстве системных плат алюминиевые электролитические конденсаторы емкостью 1200 мкФ, 16 В или 1500 мкФ, 6,3 и 10 В обладают рядом недостатков, один из которых это высыхание по истечении времени. Следствием этого является потеря ими емкости, выход компонента из строя, появление аппаратных ошибок в цепях. Риск увеличивается при использовании подобных конденсаторов в тяжелых температурных условиях, например, в корпусе системного блока компьютера температура может доходить до 50-60° С.

Танталовые конденсаторы обладают большей надежностью, чем электролитические (нет эффекта высыхания), они более компактны и имеют меньшее значение параметра ESR, увеличивающее эффективность их применения в цепях фильтрации источников питания.

В последнее время вместо часто вздувающихся электролитических конденсаторов именитые производители плат стали использовать твердотельные конденсаторы. В схемах питания новой платы ASUS M3A79-T DELUXE на чипсете AMD 790FX используются высококачественные детали, в частности, транзисторы с низким сопротивлением в открытом состоянии (RDS(on)) для уменьшения потерь при переключении и снижения тепловыделения, дроссели с ферритовыми сердечниками, и, что очень важно, твердотельные полимерные конденсаторы от ведущих японских производителей (гарантийный срок службы модуля VRM – 5000 часов). Благодаря применению таких компонентов достигается максимальная эффективность энергопотребления, низкое тепловыделение и высокая стабильность работы системы. Это позволяет получить высокие результаты разгона и увеличить срок эксплуатации оборудования.

Твердотельные конденсаторы на плате MSI 880GMA-E45

Такие же элементы используются например в материнской плате Gigabyte GA-P35T на чипсете P35. Правда, и твердотельные конденсаторы взрываются, как правильно, в следствие повышенного напряжения или просто некачественных элементов (да, такое тоже встречается!):

Взорвавшиеся конденсаторы

VRM на обычных электролитических конденсаторах имеет MTBF всего около 3000 часов.

По возможности необходимо выбирать те материнские платы, которые используются 4-фазный импульсный регулятор. В цепях фильтра VRM предпочтительно должны стоять твердотельные, а не алюминиевые электролитические конденсаторы, дроссели должны иметь ферритовый сердечник. Кроме того, на грамотно спроектированной плате, конденсаторы фильтра не должны стоять вплотную к кулеру процессора и к дросселям, чтобы не происходило их перегрева.

В идеальном варианте, необходимо выбирать те платы, которые имеют отдельный независимый регулятор напряжения для CPU, памяти и шины видеокарты. В этом случае, вы сможете отдельно регулировать напряжение на каждом из компонентов, не вызывая роста напряжения на других!

Поделиться в соц. сетях

(Посещений: 1 861, из них сегодня: 25) Платформа, РемонтMOSFET, VRD, VRM, видеокарт, генератор, кварц, ключи, конденсаторы, контроллер, материнские платы, напряжение, оперативной памяти, преобразование, стабилизация, схемотехника, транзисторы, фильтр, ШИМ, ядро

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *